RESEARCH ARTICLE

Therapeutic Efficacy of Different Ear Cleanser in Management of Canine Otitis

Jignasha M Parmar1, SK Raval2, Mayank Parwari3, Neha Rao4, DM Patel5

ABSTRACT

The objective of this study was to compare the therapeutic efficacy of three different ear cleansers in 30 dogs of various breeds suffering from otitis. Based on history and clinical signs, ear exudates were collected by aseptic cotton swab for isolation and identification of organisms. The cerumen deposition in ear-canal was cleared using one of the ear preparations, viz., ear cleanser-I (0.2 % salicylic acid and 0.3 % phenoxethanol) ear cleanser - II (chlorhexidine, propylene glycol and tris–EDTA) or ear cleanser-III (2% para-dichlorobenzene, benzocaine 2.7%, chlorbutol 5% and turpentine oil 15 %). Systemic/local antibiotics were used as per sensitivity testing. The treatment protocol found effective in the management of ear infections included cleaning the ear debris using ceruminolytic preparations/ear wax dissolvent, viz., ear drop. Ear cleanser-III showed excellent results (100%) in ceruminous as well as bacterial otitis with subsequent instillation of ear preparations containing antibacterial drug(s) and antifungal agents compared to cleanser-II (90%) and cleanser-I (70%).

Keywords: Canine otitis, Dogs, Ear cleanser, Therapeutic Management

Ind J of Vet Sci and Biotech (2019): 10.21887/ijvsbt.15.2.18

INTRODUCTION

Canine otitis is an inflammation of the ear in dogs. Otitis has a multifactorial etiology. Bacteria like Staphylococcus, Pseudomonas, Proteus, Klebsiella as well as fungi like Malassezia and Candida are known to play a major role. Otitis externa is defined as an acute or chronic inflammation of the epithelium of the external ear canal which may also involve the pinna. Otitis externa is one of the most common and multifactorial disorders accounting for up to 10-20 % of consultations in canine practice (Scott et al., 2001). In otitis, the clinical signs are head shaking, pruritus, foul-smelling discharge, pain, and reddening of the ear mucosa (Cole, 2004). Diagnosis of otitis is based on otic examination and cytology of otic discharge. The in vitro antibiotic sensitivity patterns of the microorganisms isolated help in the selection of effective drugs for successful therapy (Batra et al., 2005; Hernandez et al., 2012). The prime target of therapy of otitis aims at the elimination of the underlying cause(s), cleaning the ear canal and middle ear, applying topical therapies, and administering systemic medication. Otic cleansers contain ceruminolytics, detergents, and lubricants. Some of the acid-containing products (e.g., salicylic acid, acetic acid and lactic acid) have anti-microbial activity against bacteria and Malassezia yeasts. This work was planned to evaluate the therapeutic efficacy of three different ear cleanser without and with different antimicrobials in the cases of canine otitis.

MATERIAL AND METHODS

Thirty cases of otitis infection in dogs that were presented at the Veterinary Clinical Complex of the College at Anand and at Vcare Lakdikui, Vadodara, were selected for the present study. The affected dogs were divided into three equal groups, viz., Group-I, Group-II, Group- III, each of 10 dogs. Ten healthy dogs were also used as a control for comparison. The diagnosis was based on an otic examination and cytological examination. The in vitro antibiotic sensitivity testing was performed for the selection of effective drugs for successful therapy. The treatment protocol which was used in treating the ear infections included ear cleaning with the particular cleanser on the day of initiation of therapy, prior to the application of medicament in all the affected ears (Table 1). Initially, ear debris was cleared by application of ceruminolytic agents, and base of the ear was massaged for 20–30 seconds to soften and release the debris. Then with cotton, the debris and excess fluid was wiped out. Afterward,
ears were cleaned with sterile normal saline using a cut down (Little, 1991). Owners were advised to use ceruminolytics for the first three days prior to the use of ear drops and wipe the discharge with cotton.

Based on the results of in vitro drug sensitivity testing, preparations containing effective antibacterial/antifungal drugs were used either for instillation in the affected ear or by the oral route. If needed, both the routines of drug administration were used in some cases. Therapy, which included cleaning, topical, and systemic therapy, was aimed at resolving or removing the primary factors, reducing inflammation, and resolving secondary infections. All the cases under study were monitored at 7, 14, and 21 days after the last topical and/or systemic treatment by taking samples for bacteriological and mycological culture examination. The results of the time taken (days) of clinical recovery were presented as mean ± standard error (SE) (Snedecor and Cochran, 1994).

Results and Discussion

Dogs suffering from otitis were divided into three groups based on the therapeutic protocol. In Group-I, infected ears of 10 otitic dogs were instilled with ear cleanser-I alone once daily (Table 1). Complete recovery was noticed in seven cases of otitis caused by *Staphylococcus aureus, S. pseudintermedius, Streptococcus spp., Escherichia coli, Klebsiella spp., Pseudomonas spp., Candida spp., and M. pachydermatis*. Recurrence was observed in three cases of otitis caused by *Pseudomonas spp. Klebsiella spp., Candida spp.* in association with *M. pachydermatis*, which were treated with oral administration of moxifloxacin @ 5–10 mg/kg b.wt. and ketoconazole @ 10 mg/kg b.wt. twice daily. Complete recovery of lesions was noticed in 70 % cases of otitis in dogs with instillation of ear cleanser-I drops with systemic antibiotics (Table 2). The clinical recovery was recorded with the treatment days of 14–30 with the mean of 21.40 ± 1.69 days (Table 3). Cole et al. (2003) evaluated the in vivo efficacy of an ear cleanser containing 2.5% lactic acid and 0.1% salicylic acid for the treatment of infectious otitis externa and reported resolution of infection in 67.7 % of the ears.

In Group II, infected ears of 10 otitic dogs were instilled with ear cleanser-II, once daily, along with systemic antimicrobial drugs (Table 1). This treatment regimen was found to be effective in cases of otitis caused by *Staphylococcus aureus, S. pseudintermedius, Escherichia coli, Pseudomonas spp., M. pachydermatis* and *Aspergillus spp.* resulting in complete resolution of lesions in 90 % cases of otitis in dogs (Table 2). After recurrence in one case, it was treated with oral administration of enrofloxacin @ 10 mg/kg b.wt. twice daily and topical antibacterial drop (ciprofloxacin) @ 4-6 drops applied two times after cleaning the ear canal.

The clinical recovery was recorded in different dogs with

<table>
<thead>
<tr>
<th>Group/Ear cleanser</th>
<th>No. of cases recovered (%)</th>
<th>No. of cases with recurrence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group-I (n = 10) Ear Cleanser-I + systemic/local antibiotics</td>
<td>7 (70.00)</td>
<td>3 (30.00)</td>
</tr>
<tr>
<td>Group- II (n = 10) Ear Cleanser-II + systemic/local antibiotics</td>
<td>9 (90.00)</td>
<td>1 (10.00)</td>
</tr>
<tr>
<td>Group-III (n=10) Ear Cleanser-III + systemic/local antibiotics & antifungals</td>
<td>10 (100.00)</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3: Clinical recovery time (days) in different treatment groups of otitic dogs

<table>
<thead>
<tr>
<th>Sr.No. / Otitic dogs</th>
<th>Group-I (Ear cleanser-I)</th>
<th>Group-II (Ear cleanser-II)</th>
<th>Group-III (Ear cleanser-III)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>5</td>
<td>21</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>21</td>
<td>7</td>
</tr>
<tr>
<td>Mean ± SE (days)</td>
<td>21.40 ± 1.69</td>
<td>17.50 ± 1.17</td>
<td>13.30 ± 1.26</td>
</tr>
</tbody>
</table>
the treatment days of 14–21 with a mean of 17.50 ± 1.17 days (Table 3). Sharma et al. (2016) used ear cleanser solution
(chlorhexidine, propylene glycol, and Tris-EDTA) for cleaning
of the ear canal of 12 dogs affected with chronic otitis and
complete clinical improvement was recorded after 21 days
of treatment.

In Group III, dogs were treated with instillation of ear
cleanser - III (Table 1) once daily, either alone or with topical/
systemic antimicrobial drugs. Complete recovery was noticed
in all 10 (100%) cases of otitis caused by Staphylococcus
aureus, S. pseudintermedius, Streptococcus spp., Escherichia coli,
Aspergillus spp. and Malassezia pachydermatis. No recurrence
was observed in any case. In this group, mostly for fungal
organisms oral administration of ketoconazole @ 5–10 mg/
kg b.wt. and for mixed infection topical ear drop (Gentamicin
sulphate 0.3% w/v, Beclomethazone dipropionate 0.025 %,
Clotrimazole 1%, Lignocaine hydrochloride 2% w/v) was given
@ 2-4 drop after cleaning the ear canal. Systemic antibacterial
drugs like azithromycin, ciprofloxacin, amoxicilline-clavulanic
acid, linezolid, clindamycin were used. The clinical recovery
was recorded in treatment days of 7–21 with a mean of
13.30 ± 1.26 days. In earlier work on canine otitis externa,
ear preparation containing dioctylsodium sulphasuccinate
or para-dichlorobenzene have been reported to be very
effective ear cleansers (Nair, 2004; Kalorey et al., 2004; Mhatre,
2005). Some cases of otitis with inflammatory lesions and
intense pruritus were treated besides antibiotics with oral
administration of non-steroidal anti-inflammatory drugs
meloxicam and nimesulide.

Conclusion

Treatment regimen comprising of topical compounds (ear
cleanser) and systemic drugs (antibacterial and antifungal)
were found to be more efficacious along with supportive
treatments in resolving canine otitis. Based on the results,
it can be concluded that the canine ear infections can be
managed with ear cleaners followed by the antibacterial
and antifungal drugs with supportive treatments. However,
extensive studies on the same line involving more number of
observations are required to draw valid conclusions.

Acknowledgment

We gratefully thank the Dean of the College and the
authorities of the University for the facilities provided for
this work.

References

Batra, R., Boekhout, T., Guého, E., Cabaies, F.J., Dawson Jr, T. and
FEMS Yeast Research, 5(12): 1101-1113.
Cole, L.K. (2003). Diagnostic tests and techniques for otitis. AVMA
Convention Notes, AVMA, Denver, Colo.
Hernandez-Escare, J.J., Salinas-Melendez, J.A., Riojas-Valdez,
V.M., Picon-Rubio, F., Davalos-Ar, G. and Sanchez-Yantilde, J.M.
(2012). Malassezia pachydermatis in dogs with external otitis
6(10): 2443-2448.
Kalorey, D.R., Dakshinkar, N.P., Kurkure, N.V., Warke, S. and Sakhare,
The Veterinarian, 28: 18.
ear disease of the dog: the pathology of otitis media. Vet.
Record, 128(13): 293-296.
Mhatre, M.D. (2005). Studies on etiopathology of bacterial and
mycological infections of skin and ear in canines and their
clinical management. MVSc Thesis. Anand Agricultural
University, Anand, Gujarat, India.
management of various canine dermatoses. MVSc Thesis.
Anand Agricultural University, Anand, Gujarat, India.
claws, anal sacs and ears. In: Muller & Kirk’s (Ed). Small Animal
Therapeutic Management of Chronic Otitis in 12 Dogs. Intas
Polivet, 17(2), 283-285.
and IBM Publications, New Delhi, India, p 265.